Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Methyl 3-amino-2-cyanoacrylate

Martin Gróf, ${ }^{\text {a* }}$ Jozef Kožíšek, ${ }^{\text {a }}$ Viktor Milata ${ }^{\text {b }}$ and Anton Gatial ${ }^{\text {a }}$

${ }^{\text {a }}$ Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and ${ }^{\mathbf{b}}$ Institute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical Technology, Slovak Technical University, Radlinskeho 9, Bratislava 81237, Slovak Republic
Correspondence e-mail: martin.grof@stuba.sk

Received 20 June 2007; accepted 22 June 2007

Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.038 ; w R$ factor $=0.106$; data-to-parameter ratio $=13.2$.

In the title compound, $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$, which is an example of a push-pull olefin, a network of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interactions helps to establish the crystal packing. The length of the nominal olefinic $\mathrm{C}=\mathrm{C}$ bond is 1.385 (2) \AA.

Related literature

For related structures, see: Szulzewsky et al. (1984). For background, see: Cook (1969); Dyke (1973); Nalwa et al. (1997); Chemla \& Zyss (1987).

Experimental

Crystal data
$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=126.12$
Monoclinic, $P 2_{1} / n$
$a=3.785(1) \AA \AA$
$b=10.787(2) \AA$
$c=14.784(3) \AA$
$\beta=95.98(3)^{\circ}$
$V=600.3(2) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$

Data collection

Oxford Diffraction GEMINI R diffractometer
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006)
$T_{\text {min }}=0.946, T_{\text {max }}=0.998$
6877 measured reflections 1095 independent reflections 856 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.025$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038 \quad 17$ restraints
$w R\left(F^{2}\right)=0.106$
$S=1.11$
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.17 \mathrm{e}^{-3}$
1095 reflections
$\Delta \rho_{\min }=-0.30 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N2-H2B $\cdots \mathrm{O} 1$	0.86	2.16	$2.764(2)$	127
N2-H2B $\cdots 1^{\mathrm{i}}$	0.86	2.20	$2.906(3)$	139
N2-H2A $\cdots \mathrm{N}^{\mathrm{ii}}$	0.86	2.20	$2.928(2)$	143

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{3}{2}$.
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: enCIFer (Allen et al., 2004).

The authors thank the Grant Agency of the Slovak Republic (grant Nos. 1/2449/05, 1/1379/04 and APVT-20007304), as well as the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2451).

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Chemla, D. \& Zyss, J. (1987). Optical Properties of Organic Molecules and Crystals, Vol. 1, pp. 23-187. New York: Academic Press.
Cook, A. G. (1969). Enamines: Syntheses, Structure and Reactions. New York: Marcel Dekker.
Dyke, S. F. (1973). The Chemistry of Enamines. London: Cambridge University Press.
Nalwa, H. S., Watanabe, T. \& Miyata, S. (1997). Nonlinear Optics of Organic Molecules and Polymers, pp. 87-329. Boca Raton, FL, USA: CRC Press.
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Szulzewsky, K., Schulz, B., Kulpe, S. \& Kreutzmann, J. (1984). Acta Cryst. C40, 280-283.

supplementary materials

Methyl 3-amino-2-cyanoacrylate

M. Gróf, J. Kozísek, V. Milata and A. Gatial

Comment

The title compound, (I), belongs to the family of so-called push-pull ethylenes. Push-pull alkenes are highly reactive organic compounds with the general formula depicted in Fig. 3, where for $X=\mathrm{NH}$ or $\mathrm{N} R^{1}$ and $X=\mathrm{O}$ the R^{1} and R^{2} can be hydrogen, alkyl or hetero(aryl) group (e.g. electron donor groups) and R^{3}, R^{4} are electron acceptor groups such as $-\mathrm{CN},-\mathrm{COR},-\mathrm{COO}$, $\mathrm{SO}_{2} \mathrm{CH}_{3}$ and NO_{2}. They are useful as starting reactants or intermediates for many pharmaceutical, polymer, dye and other syntheses (Cook, 1969, Dyke, 1973).

Due to the opposite character of the substituents, the olefinic $\mathrm{C}=\mathrm{C}$ double bond order is reduced and accompanied by the increased bond orders of the bonds between the olefinic carbon atoms and their electron donor and electron acceptor groups, respectively. This leads to the substantial decrease of the rotational barrier about the $\mathrm{C}=\mathrm{C}$ double bond and to the increase of an analogous barrier about the adjecent bonds. These changes are connected with the separation of the positive and negative charges and electron delocalization within the π-electron system. The polar character of push-pull ethylenes, electronic interactions between substituents as well as the double bond are responsible for their non-linear optical properties and their use as new electro-optics materials (Nalwa et al., 1997, Chemla \& Zyss, 1987).

The study of a similar compound, ethyl 3-amino-2-cyanocrotonate, revealed the Z orientation of the ester group (cis position with respect to the amino group, i.e. Z-isomer) and the Z orientation of the carbonyl oxygen (towards the $\mathrm{C}=\mathrm{C}$ double bond position, Z-conformer) (Szulzewsky et al., 1984). Such a geometry was observed also in the case of methyl-2-cyano-3-aminoacrylate. The $\mathrm{C}=\mathrm{C}$ bond length of 1.385 (2) \AA in (I) is somewhat shorter than in the case of ethyl 3-amino-2cyanocrotonate $(1.404 \AA$). The $=\mathrm{C}-\mathrm{N}$ and $=\mathrm{C}-\mathrm{C}($ trans $)$ bond lengths of values $1.308(2) / 1.420(2) \AA$, respectively are in a good agreement with those for ethyl 3-amino-2-cyanocrotonate which are 1.309/1.420 \AA, respectively. The $=\mathrm{C}-\mathrm{C}$ (cis) bond length of the value 1.449 (2) \AA is somewhat longer as in the case of 3 -amino-2-cyanocrotonate ($1.431 \AA$).

Experimental

To methyl methoxymethylenecyanoacetate $(1.41 \mathrm{~g}, 10 \mathrm{mmol})$ in methanol (10 ml), an aqueous solution of ammonia (12 mmol) was added dropwise (amount according to concentration and density) over a period of 30 min with stirring. The slightly warmed mixture was stirred overnight at room temperature. The reaction mixture was then briefly heated to reflux (ca 20 min). After ensuring that no starting derivative remained (thin-layer chromatography; Silufol 254, Kavalier Czechoslovakia; eluent chloroform-methanol 10:1 v / v, detection UV light 254 nm), the reaction mixture was evaporated on a vacuum evaporator and chromatographed on silica gel (eluent dichloromethane-methanol 10:1 v / v). The obtained product was recrystallized from a minimal amount of chloroform and n-hexane mixture in refrigerator to yield colourless blocks of (I).

supplementary materials

Refinement

The olefinic $(\mathrm{C}-\mathrm{H}=0.93 \AA)$ and amino $(\mathrm{N}-\mathrm{H}=0.86 \AA)$ hydrogen atoms were positioned geometrically and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C}, N)$. The methyl H atoms were located in a difference Fourier map and included in the model as a rigid rotating group, with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$.

Figures

Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 60% probability level (arbitrary spheres for the H atoms).

Fig. 3. The general formula for push-pull alkenes, where for $X=\mathrm{NH}$ or $\mathrm{N} R^{1}$ and $X=\mathrm{O}$ the R^{1} and R^{2} can be hydrogen, alkyl or hetero(aryl) group (e.g. electron-donor groups) and R^{3},
R^{4} are electron-acceptor groups such as $-\mathrm{CN},-\mathrm{COR},-\mathrm{COOR},-\mathrm{SO}_{2} \mathrm{CH}_{3}$ and $-\mathrm{NO}_{2}$.

Methyl 3-amino-2-cyanoacrylate

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=126.12$

Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=3.785$ (1) \AA
$b=10.787$ (2) \AA
$c=14.784(3) \AA$
$\beta=95.98(3)^{\circ}$
$V=600.3(2) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& F_{000}=264 \\
& D_{\mathrm{x}}=1.395 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Mo} \mathrm{~K} \mathrm{\alpha} \mathrm{radiation} \\
& \lambda=0.71073 \AA \\
& \text { Cell parameters from } 4197 \text { reflections } \\
& \theta=3.8-30.4^{\circ} \\
& \mu=0.11 \mathrm{~mm}^{-1} \\
& T=100 \mathrm{~K} \\
& \text { Slab, colourless } \\
& 0.53 \times 0.21 \times 0.04 \mathrm{~mm}
\end{aligned}
$$

Data collection

Oxford Diffraction GEMINI R diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=100 \mathrm{~K}$
1095 independent reflections

Rotation method data acquisition using ω and φ scans $\theta_{\text {min }}=4.6^{\circ}$
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
$T_{\text {min }}=0.946, T_{\text {max }}=0.998$
$h=-4 \rightarrow 4$

6877 measured reflections
$k=-12 \rightarrow 12$
6877 measured reflections
$l=-17 \rightarrow 17$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.106$
$S=1.11$
1095 reflections
83 parameters
17 restraints

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0584 P)^{2}+0.1974 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\max }=0.17$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.30$ e \AA^{-3}
Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.1333(3)$	$0.38235(11)$	$0.56002(8)$	$0.0238(3)$
O2	$0.3605(3)$	$0.23064(10)$	$0.65388(7)$	$0.0211(3)$
N1	$0.8157(4)$	$0.35812(13)$	$0.84585(10)$	$0.0246(4)$
N2	$0.3268(4)$	$0.62174(13)$	$0.61008(9)$	$0.0234(4)$

H2B	0.2041	0.5812	0.5677	0.028^{*}
H2A	0.3452	0.7010	0.6063	0.028^{*}
C4	$0.6658(4)$	$0.39141(14)$	$0.77822(11)$	$0.0186(3)$
C2	$0.4814(4)$	$0.43641(15)$	$0.69625(10)$	$0.0185(3)$
C1	$0.3076(4)$	$0.35106(15)$	$0.63025(11)$	$0.0179(3)$
C3	$0.4853(4)$	$0.56287(15)$	$0.68030(11)$	$0.0194(4)$
H3A	0.6145	0.6111	0.7242	0.023^{*}
C5	$0.1961(4)$	$0.14209(15)$	$0.58854(12)$	$0.0236(4)$
H5C	0.2630	0.0595	0.6076	0.028^{*}
H5B	0.2742	0.1579	0.5299	0.028^{*}
H5A	-0.0575	0.1503	0.5849	0.028^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0283(6)$	$0.0225(6)$	$0.0195(6)$	$0.0013(5)$	$-0.0032(4)$	$-0.0002(4)$
O2	$0.0253(6)$	$0.0171(5)$	$0.0203(6)$	$-0.0004(4)$	$-0.0003(5)$	$-0.0008(4)$
N1	$0.0288(8)$	$0.0206(8)$	$0.0233(7)$	$0.0006(6)$	$-0.0026(5)$	$-0.0009(6)$
N2	$0.0302(8)$	$0.0176(7)$	$0.0214(7)$	$-0.0019(5)$	$-0.0027(6)$	$0.0005(5)$
C4	$0.0192(8)$	$0.0165(8)$	$0.0205(7)$	$0.0000(6)$	$0.0035(5)$	$-0.0019(6)$
C2	$0.0179(7)$	$0.0192(6)$	$0.0184(7)$	$0.0011(6)$	$0.0024(5)$	$-0.0001(5)$
C1	$0.0168(7)$	$0.0186(6)$	$0.0187(7)$	$0.0007(6)$	$0.0038(5)$	$0.0009(5)$
C3	$0.0192(7)$	$0.0204(7)$	$0.0186(7)$	$0.0001(6)$	$0.0021(6)$	$-0.0013(6)$
C5	$0.0238(8)$	$0.0217(8)$	$0.0250(9)$	$-0.0023(6)$	$0.0010(7)$	$-0.0047(6)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 1$	$1.2185(19)$
$\mathrm{O} 2-\mathrm{C} 1$	$1.3545(19)$
$\mathrm{O} 2-\mathrm{C} 5$	$1.452(2)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.154(2)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.308(2)$
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	0.8600
$\mathrm{~N} 2-\mathrm{H} 2 \mathrm{~A}$	0.8600
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 5$	$114.70(12)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	120.0
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	120.0
$\mathrm{H} 2 \mathrm{~B}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	120.0
$\mathrm{~N} 1-\mathrm{C} 4-\mathrm{C} 2$	$178.10(17)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 4$	$117.98(14)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$121.57(14)$
$\mathrm{C} 4-\mathrm{C} 2-\mathrm{C} 1$	$120.40(15)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$122.53(14)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$124.44(15)$
$\mathrm{C} 5-\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	$0.6(2)$
$\mathrm{C} 5-\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	$-178.86(12)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1$	$-5.3(2)$
$\mathrm{C} 4-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1$	$177.15(14)$

$\mathrm{C} 4-\mathrm{C} 2$	$1.420(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.385(2)$
$\mathrm{C} 2-\mathrm{C} 1$	$1.449(2)$
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9300
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{C}$	0.9600
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	0.9600
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9600
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	$113.03(13)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2$	$126.96(15)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	116.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	116.5
$\mathrm{O} 2-\mathrm{C} 5-\mathrm{H} 5 \mathrm{C}$	109.5
$\mathrm{O} 2-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	109.5
$\mathrm{H} 5 \mathrm{C}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	109.5
$\mathrm{O} 2-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	109.5
$\mathrm{H} 5 \mathrm{C}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	109.5
$\mathrm{H} 5 \mathrm{~B}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	109.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 2$	$174.06(13)$
$\mathrm{C} 4-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 2$	$-3.4(2)$
$\mathrm{C} 4-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	$-178.63(15)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	$3.8(2)$

sup-4

supplementary materials

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N2—H2B $\cdots \mathrm{O} 1$	0.86	2.16	$2.764(2)$	127
N2—H2B $\cdots \mathrm{O} 1^{\mathrm{i}}$	0.86	2.20	$2.906(3)$	139
N2—H2A $\cdots \mathrm{N} 1^{\mathrm{ii}}$	0.86	2.20	$2.928(2)$	143
Symmetry codes: (i) $-x,-y+1,-z+1 ;($ ii $)-x+3 / 2, y+1 / 2,-z+3 / 2$.				

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $-x+3 / 2, y+1 / 2,-z+3 / 2$.

supplementary materials

Fig. 1

Fig. 2

supplementary materials

Fig. 3

